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Fluorescence correlation spectroscopy (FCS) is a powerful
technique for measuring low concentrations of fluorescent
molecules and their diffusion coefficients in an open
detection volume. However, in several practical cases,
when FCS measurements are carried out in small com-
partments like microchannels, neglecting boundary effects
could lead to erroneous results. Here, a close form
solution is proposed to explicitly account for the presence
of walls located at a distance comparable with the char-
acteristic detection volume lengths. We derive a one-
dimensional diffusion constrained model and then gen-
eralize the solution to the two- and the three-dimensional
constrained cases. We further indicate within which limits
the standard autocorrelation function (ACF) model gives
reliable results in microconfinement. Our model relies
just on the assumption of elastic hits at the system
walls and succeeds in describing the ACF of fluorescent
probes confined along one direction. Through the analysis
of FCS experimental data, we are able to predict the
correct shape of the ACF in channels of micrometric and
submicrometric width and measure the extent of lateral
confinement. In addition, it permits the investigation of
microstructured material features such as cages and
cavities having dimensions on the micrometric range. On
the basis of the proposed model, we also show in which
conditions confinement could generate an apparent time
dependent probe mobility, thus allowing a proper inter-
pretation of the transport process taking place in submi-
crometric compartments.

Fluorescence correlation spectroscopy (FCS) has been exten-
sively used in the past two decades to measure molecular diffusion
in dilute solutions and on membranes and analyze chemical
kinetics and conformational dynamics.1 Although usually applied

to freely diffusing molecules, FCS has been involved as a robust
procedure for the measurement of molecular mobility in and on
live cells and tissues. Indeed, FCS has been used to monitor the
molecular motion in subcellular compartments such as molecule
trafficking through calcium channels for secretion and synaptic
transmission2 and molecule transport within a patch clamp with
a perforated vesicle containing calcium or potassium channels.3

Recently, this technique has been applied to measure the diffusion
coefficient and the convective flow of fluorescent probes in
microcapillaries and submicrometer structures.4-7

In all the cases in which the mobility is measured in small
compartments, the main limitation regarding FCS applicability is
due to the lack of an adequate interpreting model since the ones
available in the literature are suitable for infinite size systems.
Generally, the deficiency of the convectional models occurs when
FCS experiments are carried out inside systems comparable with
the FCS focal volume which is less than one femtoliter. Strong
deviations from widely established models were reported for
molecular diffusion in the self-assembled lipid tubule interior8 and
membranes.9

In these not standard operative conditions, many formulations,
either numerical10-12 or statistical13 have been proposed in order
to predict the experimental autocorrelation function (ACF).
Therefore, an extension of the standard ACF model (freely
diffusing fluorescent probes) is largely required when fluorescent
intensity fluctuations are measured in confined volumes. This
extension should allow the usage of complex biophysical models
accounting for several aspects such as the chemical nature of the
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confinement and its environment. In this context, we proposed a
versatile and easy tool that accounts for the presence of walls at
a distance comparable to the characteristic lateral length of the
focal volume. Assuming the walls are ideal reflectors, we are able
to predict the ACF in submicrometric and micrometric structures
and the confinement extension. We also indicate above which
critical system size the wall effect can be conveniently neglected.
Moreover, our method could be further extended to include more
complex transport models and probe-wall interactions.

STANDARD MODEL
FCS is based on the statistical analysis of fluorescence intensity

fluctuations due to fluorescent probe trafficking in a small volume
of the sample where light is focused (focal volume). The fluctuations
are analyzed by temporal autocorrelation, and the resulting ACF can
be predicted by averaging all possible fluorescent probe trajectories
in a given time interval (lag time). Therefore, if the nature of the
undergoing transport process is known and representable through
a simple biophysical model, a theoretical ACF can be formulated and
its prediction compared with experimental data. Generally, Brownian
dynamics is assumed to be a reliable biophysical model for probe
motion in a liquid. Brownian dynamics assumes that all moving
probes are identical and independently moving from the others. In
addition, probe displacements along at least three directions are
assumed to be uncorrelated. On this basis, the standard ACF of the
fluorescent intensity signal can be defined in terms of single particle
average contribution,1,14

G(t) ) 1
〈i〉2 ∫ ∫ IE(rb1)IE(rb2)p(rb1, rb2, t)drb1drb2 (1)

where 〈i〉 is the average intensity, IE is detectable emission
intensity distribution (spatial detectivity function), and p is the
probability density for a single particle that started a random
walk at time 0 at the point rb1 to be at rb2 at a lag time t. IE

depends on the FCS optical setup since it represents the
effective shape of the detection volume. As suggested by
Rigler,15 the spatial detectivity function can reliably be ap-
proximated by a three-dimensional Gaussian profile,

IE(rb) ) Ioe-2[(x2+y2)/rxy
2]e-2(z2/rz

2) (2)

where rxy and rz are, respectively, the characteristic lengths of
the detection volume. Under these assumptions, Aragón and
Pecora16 derived the following standard ACF expression,

G(t) ) g(t)
〈i〉2 ) 1

〈N〉
1

√1 + 4Dt/rxy
2

1

√1 + 4Dt/rxy
2

1

√1 + 4Dt/rz
2

(3)

where D and 〈N〉 correspond to the probe diffusion coefficient and
the average number of particles detected in the focal volume,

respectively. The standard ACF model, eq 3, consists of the product
of three identical functional forms representing the temporal auto-
correlation contributions due to the probe displacement along the
axial directions (x̂, ŷ, and ẑ). This property comes directly from the
assumption that particle paths along these directions are uncorrelated
which permits one to decouple the double integral in eq 1 along the
three axial directions. Decoupling ACF along the axial directions is
valid as long as Brownian particles moving inside a 3D Gaussian
detectivity function are taken into account. Therefore, a general
form17 of the ACF can be rewritten as

G(t) ) 1
〈N〉

gx(t)
gx(0)

gy(t)
gy(0)

gz(t)
gz(0)

(4)

DIFFUSION CONSTRAINED BY WALLS ALONG
AXIAL DIRECTION

Whenever FCS measurements are carried out in systems
having at least one dimension comparable to the characteristic
length of the detection volume, the presence of lateral confine-
ments, like walls, needs to be explicitly accounted for in order to
properly estimate the probe mobility. Decoupling the ACF along
the axial directions is valid as long as Brownian dynamics is
assumed to be the transport mechanism forcing the probes to
move within a 3D Gaussian detectivity function. Indeed, the
presence of walls along the axial directions does not affect the
applicability of the eq 4; thus, the constrains can still be considered
independently along each direction. Therefore, the constrained
diffusion problem is solved along a generic axial direction, k̂, where
the confinement is defined. In the case of interest, the detection
volume characteristic length, rk, is comparable with the system
width, d, defined as the distance between two walls located at
0 and d, respectively, see Figure 1a. The ACF along the generic
axial direction k̂ is defined as

gk(t) ) ∫0

d ∫0

d
e-2[(k1-k0)/rk

2]e-2[(k2-k0)/rk
2]pc(k1, k2, t)dk1dk2

(5)

where k0 is the laser beam focus position with respect to the axes
origin, k1 and k2 are the components of r̂1 and r̂2 along the k̂
direction, and pc is the confined probability density function
relative to displacements occurring along the k̂ direction. The
confined probability density could be represented by the 2D
Fokker-Planck solution, as previously suggested by Gennerich
and Schild10 and by Elson and Madge.1

Here, an alternative treatment is proposed where the effect of
lateral confinement on the ACF is modeled through the reflection
and superposition method18 which consists in folding the uncon-
fined probability density function, p, within the system walls,
Figure 2a. The constrained probability density, pc, is obtained
by summing up all the parts derived from the reflections of
the unconfined probability density within the interval [0,d]. Due
to the linearity of the integral operator, eq 5 can be rewritten
as the sum of integrals each corresponding to a single reflection
contribution. These contributions can be spatially rearranged as

(14) Papoulis, A. Probability, Random Variables and Stochastic Processes, 3rd ed.;
McGraw-Hill Companies: New York, 1991.

(15) Rigler, R.; Mets, U.; Widengren, J.; Kask, P. Eur. Biophys. J. 2000, 39,
642–651.

(16) Aragon, S. R.; Pecora, R. J. Chem. Phys. 1976, 64, 1791–1803.

(17) Rigler, R.; Elson, E. S. Fluorescence correlation spectroscopy: Genesis,
Evolution, Maturation and Prognosis, 2nd ed.; Springer: Heidelberg,
Germany, 2001.

(18) Crank, J. The mathematics of diffusion, 2nd ed.; Oxford University Press:
New York, 1975.
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shown in Figure 2b resulting in a unique integral defined from
-∞ to +∞. This integrates the product of the unconfined
probability density and the periodic spatial detectivity function
(PD) obtained by consecutive reflections of the real one with
respect to the system walls, Figure 2b. This proves the equivalence
of an ACF of a confined particle and that of an unconfined one
moving below a PD function. Furthermore, the PD function,
being symmetric with respect to the origin, can be represented
by Fourier cosine series of amplitudes an defined over the
interval [0,2d]; see Figure 2b. This allows one to compute
the ACF as

gk(t) ) d
2[a0

2

2
+ ∑

n)1

+∞

an
2e-(n2π2/2R2)(t/td)] (6)

The parameter R is a dimensionless number which is proportional
to the system width, d, and is equal to ((2)1/2d)/rk, while td

corresponds to the characteristic diffusion time which is
defined as rk

2/(4D), coherently with the standard model. The
analytical expression of an is given below,

an )
√π
2R

e-(π2n2/4R2)-(iHπn/R)[erf(H - inπ
2R ) -

erf(H - R - inπ
2R ) + e2iHnπ/R(erf(H + inπ

2R ) -

erf(H - R + inπ
2R ))] (7)

where H is another dimensionless parameter equal to ((2)1/2k0)/
rk which represents the laser focus potion with respect to the
walls. When this position corresponds to the system middle
point (k0 ) d/2 or H ) R/2), the an expression results are
strongly simplified and eq 7 becomes

an )
√π
R

e-(n2π2/4R2)cos(nπ
2 )[erf(inπ

2R
+ R

2 ) - erf(iπn
2R

- R
2 )]

(8)

thus reducing the mathematical expression complexity. In both
equations, eqs 7 and 8, the highest computational cost is required
by the calculation of error functions, erf, with complex argu-
ments.19 The operative ACF expression is then obtained by
normalizing the gk(t) function respect to its initial value,

gk(0) )
rk√π

2
[erf(√2(R - H)) + erf(√2H)] (9)

as previously determined in the standard model derivation
procedure, eq 4. The strong simplification of the eq 8 is mainly
due to the detectivity function shape which is further symmetric
with respect to its focus. Indeed, when the laser focus is at the
system center, the basic interval of the Fourier series changes
from [0,2d] to [0,d], leading all an coefficients evaluated at even
values to be zero; see eq 7.

(19) Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions, 2nd ed.;
Dover Publications, Inc.: New York, 1972.

Figure 1. Details on FCS measurements. (a) Gaussian detectivity distribution confined by walls located at 0 and d (light blue area) along an
arbitrary direction k̂. rk represents the characteristic length of confocal volume along one direction centered at k0. (b) Experimental setup used
for FCS measurement in channels (not to scale). Structure of a channel with nanometric height of 20 nm and width of 2 µm. The sampling
volume is confined approximately to a cylindrical volume of height h and radius equal to the confocal waist rxy. Molecules (in red) are detected
while diffusing through the sampling volume.

Figure 2. Graphical representation of the mathematical equivalence between ACF of constrained diffusing particles (a) and ACF of an unconfined
particle belonging to a periodic detectivity distribution (b). (a) The correlation is the integral from 0 to d of the product of the Gaussian detectivity
distribution and the confined probability density (tick line), which corresponds to the sum of reflected unconfined probability density functions
needed to fold the probability density within the system walls (dotted and dashed lines). (b) The same result can be calculated as the product
of the unconfined probability density (red dashed line) times the PD function obtained by consecutive reflections of the real detectivity function
with respect to the walls (light blue area).
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ONE-DIMENSIONAL SYMMETRICALLY
CONFINED DIFFUSION

The effect of the confinement along the generic k̂ direction is
shown in Figure 3a, where gk(t)/gk(0) is calculated for several
system sizes, R. In each computed case, the model predicts
the lag time tR at which the deviation from the standard ACF
occurs. In large systems, tR becomes greater than the charac-
teristic diffusion time, td; thus, the prediction converges on the
standard ACF, and the wall effect is no longer significant.
Mathematically, the constrained case and the standard model
correspond until negligible reflections are required to realize
the null flux condition at the walls. Therefore, tR corresponds
to the average time between sequential particles-wall colli-
sions; thus, when the system size is increased, the deviation
occurs at larger tR.

As shown in Figure 3a, the model predicts a plateau at large
lag times for a generic constrained dimension. Indeed, the
probability of finding a particle that starts a random walk at a given
position to be elsewhere within the walls is finite even at large
times. The plateau value is related to the highest possible mean
square displacement (MSD), which is limited since the system is
of finite size. Along a constrained direction, the correlation reaches
a plateau without decaying to zero and, therefore, it might seem
that a perturbation persists in a finite volume endlessly. Moreover,
ACF becomes identically equal to 1 as the system size, d,
approaches zero. This misconceptions are due to the unsuitability
of eq 4 which has to be modified as

G(t) ) 1
〈N〉

gx(t)gy(t)gz(t) - gx(∞)gy(∞)gz(∞)
gx(0)gy(0)gz(0)

(10)

to correctly describe the ACF in finite systems. In infinite systems,
any kind of fluctuation, considered as an initial condition for the
ACF prediction, becomes identically zero at large lag time and
then is forgotten. On the contrary, in finite systems, the ACF decay
to zero has to be imposed since is not guaranteed for all possible
initial conditions. For symmetrically confined systems, the analyti-
cal expression of the large lag time plateau is again strongly
simplified and becomes

gk(∞)
gk(0)

)
√2πerf(R/2)2

Rerf(R/√2)
(11)

In Figure 3b, the effect of the confinement for one-dimensional
constrained systems is illustrated, where gk(t)/gk(0) - gk(∞)/
gk(0) is displayed at several R values. As a result of eq 10, the
ACF decays to zero for large lag times and low R values. This
observation agrees with what was attended for a zero size system
where particles are unable to move and, thus, produce fluctuations.

DIFFUSION MODEL WITH WALLS IN MORE THAN
ONE DIMENSION

In order to generalize the solution to higher dimensional cases,
eqs 4 and 10 have to be applied. Diffusion constrained in channels
(2D) and boxes (3D) are again treated considering the focus
located at the system middle point since this configuration is
commonly adopted in nonstandard FCS measurements. The
model predictions are shown for both cases and compared with
the 1D and 3D standard ACF; see Figure 4.

In the case of fluorescent probes confined in the channel of
several widths, all ACF curves are locked within the region defined
by 3D and 1D standard ACF, Figure 4a. When the channel section
is reduced, the confined ACF progressively approaches the
standard 1D ACF. In general, for constrained systems, the
decorrelation cannot occur faster than the 3D standard ACF and
slower than 1D or 2D standard ACF depending on the number of
directions along which the motion is confined. When the particle
motion is confined along all directions, Figure 4b, the ACF
strongly deviates from the 3D standard model in terms of both
shape and initial value, since eq 10 is used instead of eq 4 to
impose total decorrelation at large lag time. The accuracy of this
correction is validated by the fact that ACF goes to the identically
zero function with a reduction in system size, and this is in
agreement with what is physically attended since the system is
so small that fluctuations cannot occur any more in any direction.

EXPERIMENTAL SETUP
Borosilicate channels manufactured by chemical etching and

direct bonding procedures were used to register ACF deviations

Figure 3. 1D confined ACF contribution at different values of R ) ((2)1/2d)/rk (full lines), compared with standard 1D ACF (dashed red line). (a)
When R values are decreased, the ACF contribution approaches a constant value equal to 1 since particle movements do not produce detectable
signal fluctuations along the confined direction and, in turn, its contribution to the overall ACF is negligible. At increasing system size (higher R
values), the 1D ACF contribution asymptotically approaches the 1D standard contribution since the average time needed to collide with the
walls becomes larger than the characteristic decorrelation time. (b) The ACF is forced to be zero at large lag since even in constrained systems
fluctuations cannot persist endlessly. When R values are reduced, 1D confined ACF approaches the zero function since intensity signal deviations
from the mean value are almost zero.
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in confined systems (Micronit Microfluidics, Enschede, The
Netherlands).

Channels are 20 nm in depth while width is 2 µm with constant
length of 500 µm. As declared from the manufacturer, channels
surface roughness was less than 1 nm and the contact angle
measured 18 ± 8°. Fluidic connections were purchased from
Upcharch Scientific, USA. Borosilicate glass syringes equipped
with PEEK connectors were purchased from ILS (Innovative Labor
System, Germany). Microcapillaries were used to connect the
syringes to the chip. We performed FCS on Rh6G (MW ) 479;
Fulka, Sigma Aldrich). DI water (pH ) 6.3, 18 MΩcm-1)
filtered with 100 µm filters (Whatman), as to avoid dust
clogging in the reservoirs, was used to prepare fresh solutions.
A confocal fluorescence correlation spectroscope, ConfoCorII
(Carl Zeiss, Jena, Germany) was used to carry out FCS
experiments. A 488 nm laser beam was focused by a Apochro-
mat 63× water immersion objective (numerical aperture of 1.2);
the emitted fluorescent light was collected by the same
objective and separated from the excitation light by a dichroic
mirror. The emission beam was mapped onto a pinhole (70
µm) in the image plane of the objective. Fluorescent emission
was sent to a 530 nm LP and then acquired on the avalanche
photodiode (APD).

Fluorescence was detected by an APD in single-photon-
counting mode. The system built-in correlator was employed for
bulk measurements, though a custom developed software (Fluc-
tuation Analyzer) was dedicated to the analysis of measurements
in microconfinement. Channels were placed in a custom designed
chipholder. Chips were connected by PEEK connectors to a
syringe filled with solution, preconditioned with DI water, and
then loaded with a 100 nM solution of fluorescent molecules. A
small pressure was applied, and the solution was sucked into the
reservoirs; then, when no residual flux was registered, microcap-
illaries were connected in order to prevent evaporation from
reservoirs. Channels were let to equilibrate at 23°C overnight
before measurements to permit the fluorescent solution to diffuse
from the reservoirs to the channels, which were previously imaged
for control.

In order to minimize artifacts due to focus positioning with
respect to the channel height, focus was positioned in cor-
respondence to the maximum molecular brightness and per-
formed in the middle of channels to demonstrate laser beam lateral
confinement. All ACFs were calculated directly from signal
trajectories acquired with a bin time of 1 µs. To optimize computer
performance, data were further binned during analysis to 10 µs.
The maximum lag time was set to 30 s for bulk measurements
and to 300 s for channel measurements. The translational diffusion
time was obtained from the autocorrelation function of the
intensity fluctuations monitored as a function of time. Focal volume
parameters were fit from ACF curves of 10 nM Rh6G dye diffusing
in water (diffusion coefficient 2.8 × 10-6 cm2s-1) and eq 3 to obtain
rxy which measured 0.15 µm.

RESULTS AND DISCUSSION

FCS is widely used for concentration and mobility measure-
ments of fluorescent probes in biological systems like cells and
plasma membranes. Whenever FCS is carried out in small systems
of comparable or smaller size than the focal volume, deviations
from the conventional ACF may be registered. In these cases,
the validity of the standard model is weak since boundary effects
become relevant. In confined compartments, erroneous results
in terms of both molecule concentration and characteristic
diffusion time could be obtained inducing misconceptions about
the real physics governing mass transport. For this reason, we
developed an ACF model which explicitly accounts for the
presence of confinements on the confocal volume length scale.
We demonstrated that the reflection and superposition method
can successfully account for the confinement effect and well
describe the generally attended physics behavior. We pointed out
that the only presence of walls has a severe effect on the ACF
shape which strongly deviates from the standard model. More-
over, we identify a characteristic time, tR, at which the deviation
takes place. This characteristic time is directly correlated with
the system width through the dimensionless parameter, R. We
showed that tR increases with increasing system size.

Figure 4. 3D ACF in a channel and in a box. (a) 3D ACF symmetrically constrained along x and y directions at different values of R ) Rx )
Ry (full line) compared with standard 3D and 1D ACF (dashed lines). When the system size along two dimensions is reduced, the ACF deviates
from the 3D ACF approaching the 1D curve. When the particle motion is symmetrically confined along two directions, the constrained ACF
always lies within the 3D and 1D ACF. (b) 3D ACF symmetrically constrained along all directions at different values of R ) Rx ) Ry ) Rz (full
lines) compared with the 3D ACF (dashed line). When the system size along all directions is reduced, the ACF decorrelates faster than the 3D
standard case and it approaches zero when the system becomes so small that particle movements are confined on a scale where intensity
signal fluctuations are negligible.
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At this point, it is crucial to identify the relationship between
tR and R, which can be derived by defining tR as the lag time
at which the standard ACF becomes equal to the plateau value
of the confined ACF at that R size; see Figure 3a, obtaining the
following expression,

tR ) td(1 - R2 erf(R/√2)2

2πerf(R/2)4) (12)

The ratio of tR and td sharply increases with R for R less than
20; see Figure 5. In this range, the confinement exerts the highest
effect on the ACF, whereas for larger R values, tR becomes 2
orders of magnitude bigger than the characteristic diffusion
time, td, locating the deviation at the ACF value not readily
detectable by the FCS setup.

In order to validate the proposed model, we picked out ACF
data from literature and performed FCS experiments in channel
of micrometric width. Indeed, several authors6,7 investigated probe
mobility inside nanochannels of micrometric and submicrometric
widths, and they all registered deviations from the standard ACF
model. Commonly, these experiments were carried out in chan-
nels of nanometric height, thus resulting in the gz correlation
contributing a negligible amount. Therefore, they were all
interpreted by 2D ACF models. In these particular cases, the
channel heights were all several times larger than the probe
size which assured that the probe lateral mobility was unaf-
fected by the topological confinement exerted by the nano-
metric extent of the channel height.20 Therefore, the probe
mobility is attended to be unchanged in micrometric wide
channels as well. In particular, the 2D standard ACF model
well represented the experimental behavior in channels having
width of 10 µm independently from the specific experimental
conditions adopted. This evidence is well explained by our
model. In fact at R corresponding to 10 µm confinement, the
tR value is about 3 orders of magnitude larger than td, thus
making the technique insensitive to this confinement grade;

see Figure 5. On the other hand, whenever the confinement grade
was on the focal volume length scale, the 2D standard model was
unable to predict the ACF and relevant deviations were reported.

Petrásek et al.7 performed ACF measurements of Alexa 546
water solutions in silicon oxide channels of different sizes
detecting large deviations from the 2D standard model in channels
of 0.6 µm width, which is about two times the horizontal length
of the focal volume. They reported that 2D or 1D standard models
were unable to provide physically reasonable probe mobilities in(20) De Santo, I.; Causa, F.; Netti, P. A. Anal. Chem. 2010, 82, 997–1005.

Figure 5. Ratio of tR and td as a function of system size, R. The
ratio is almost equal to 1 for R close to 3.5. tR becomes larger than
td at increasing system size, R, and the wall effect becomes
progressively negligible. Experimental results analyzed are shown on
the curve: tR/td close to 0.1 was found in 0.35 µm channels (square);
in 0.6 µm channels, a time ratio of about 1 was measured (triangle
up), whereas in 2 µm channels the ratio is several times larger than
1 (circle). In 10 µm channels, the tR value is more than 2 orders of
magnitude larger than td (triangle down) and the system recovers
completely an infinite size along the confined length.

Figure 6. Fluorescence autocorrelation curve measured in the center
of a 0.6 µm wide channel filled with 10 nM solution of Alexa 546 in
water; the autocorrelation was fit to the 2D ACF model accounting
for confinement in one dimension. The fitting predicted channel width
and characteristic decorrelation time is equal to 0.56 µm and 80 µs,
respectively. This result is in agreement with the value of 77 µs
obtained by the standard model for a larger channel of 10 µm width,
in the same operative conditions.

Figure 7. Fluorescence autocorrelation curve measured in the center
of a 0.35 µm wide channel filled with 1 µM solution of Alexa Fluor
488-5-dUTP in water; the autocorrelation was fit to the 2D ACF model
accounting for confinement in one dimension. The fitting predicted
channel width and characteristic decorrelation time is equal to 0.4
µm and 103 µs, respectively. The predicted characteristic time is equal
to the one obtained by the 2D ACF standard model for a larger
channel of 10 µm width, in the same operative conditions.
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the channels. To account for these deviations, the authors used
the model proposed by Gennerich.10 Their analysis gave a
characteristic time of 98 ± 7 µs, slightly higher than the one
measured in wider channels of 10 µm width (77 ± 3 µs), and a
channel width esteem 40% bigger than the nominal value.

Then, our model was used to fit the ACF recorded in 0.6 µm
wide channels under several assumptions as shown in Figure 6.
First, the mobility was kept unchanged with respect to the one
measured in 10 µm wide channels, and the channel width was
estimated as a unique unknown parameter. This procedure yielded
a channel width of 0.55 ± 0.03 µm with 8% deviation with respect
to the nominal channel size. Instead, assuming the channel width
is equal to its nominal size (0.6 µm) and the mobility is unchanged
along the unconfined direction (77 µs), a td value of 90 ± 13 µs
was estimated along the channel width. Considering both td

and R as unknown parameters, a channel width of 0.56 ± 0.05
µm and a td value of 80 ± 6 µs were evaluated. The proximity
of all estimated values proves that mobility and confinement
extent can be simultaneously evaluated. The larger td value of
90 µs along the channel width could be due to molecule-wall
interactions which are not explicitly accounted for in this model
and can result in an apparent reduced mobility. This effect will
be considered in an extended version of the confined model
proposed.

Foquet et al.6 measured Alexa Fluor 488-5-dUTP mobility in
nanochannels of different widths by FCS. They also reported an
ACF deviating from the 2D standard model in narrow channels.
Again the 2D standard model could interpret the results for a 10
µm wide channel, giving td of 103 ± 2 µs, but failed when applied
to an ACF recorded in a 0.35 µm wide channel estimating a td

of 244 ± 4 µs (see Figure 7). When td was kept equal to the
value found in 10 µm wide channels, our confined model was
then adopted to identify the confinement extent obtaining 0.40
± 0.02 µm. Such good esteem is still found when both fitting
parameters, td and R, are let free, giving the same values
calculated before within confidence intervals.

After validating our model on already available data sets on a
submicrometric wide channel, we measured Rh6G diffusion in
channels of 20 nm height and 2 µm width, Figure 8. The 2D
standard model gave a td of 24 ± 2 µs compared with 20 ± 2 µs
measured in bulk experiments. When the nominal channel
width as a confinement value is imposed, a td of 29 ± 1 µs was
obtained, whereas assuming the mobility unchanged with
respect to the bulk, a channel width of 0.76 ± 0.07 µm was
evaluated. In our case, the 2D standard model deviates from
the experimental ACF only at large lag time values. This
deviation occurs later with respect to former cases since the
channel is now several times larger than those used in
previously reported experiments. This implies that the standard
model results are still reasonable at this confinement grade.
Anyway, our model well interprets ACF at large lag time as
shown in the residual plot in Figure 8. However, the combination
of small diffusion time and large lateral width causes a weak
independent parameter estimation due to the deviation occurrence
on a noisy part of the ACF.

The proposed model provides reliable results both for submi-
crometric and micrometric confinements. In Figure 5, all analyzed
experiments are reported in terms of their corresponding dimen-

sionless parameter R. In the range investigated by Petrásek, both
1D and 2D standard ACF models were unable to interpret
correctly the ACF data, since the average time between sequential
particle-wall collisions is comparable with td. At higher confine-
ment grades, such as those considered by Foquet, the tR/td

ratio is close to 0.1 and the deviation from the standard 2D
model occurs on the early part of the ACF. The results of our
model properly predict the diffusion time and the confinement
grade although the system dimensions are reaching the
sensitivity limit below which also the ACF lateral direction
contribution becomes negligible, hence approaching a 1D
system. This implies that the limited size of the confocal optics
determines the lower bound applicability limit of our model.
On the other side, in the experimental conditions we investi-
gated, the Rh6g tR attains a value 1 order of magnitude larger
than td. Here, channel dimensions are large enough to achieve
still reasonable results with the 2D standard model. Therefore,
fast diffusing probes can be employed for the investigation of
microstructured cavities having dimensions up to a few
micrometers. Overcoming these length scale model results are
no longer reliable, and other methods might become more
appropriate in material characterization.

Additional considerations are needed for the interpretation of
an ACF generated in confined systems. Freely diffusing probes
are commonly considered isotropic in motion. This assumption
is reasonable measuring fluorescent probe mobility in homoge-
neous infinite systems but becomes weak when diffusion takes
place in anisotropic systems of diverse lengths on the same length
scale of the focal volume size.

Figure 9 shows a 2D channel of finite extent along the ŷ axis
and infinite size along the x̂ axis, and the MSD evolution of a probe
initially located at the channel center where the laser is focused.
The inset represents the most relevant elements of the trajectory
ensemble upon which ACF is computed. As far as the probe freely
moves along both directions, the gy and gx contributions are

Figure 8. Fluorescence autocorrelation curve measured in the center
of a 2 µm wide channel filled with 10 nM solution of Rh6G in water;
the autocorrelation was fit to a 2D ACF model accounting for
confinement in one dimension. When the nominal channel width as
confinement value is imposed, a td of 29 µs was obtained in
agreement with 20 µs measured in bulk experiments.
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equal, thus resulting into a 2D standard ACF. This condition
is fulfilled until the MSD becomes comparable with the lateral
confinement square size, thus approaching its maximum value
along the confined axial direction, ŷ. From this point onward,
the decorrelation rate along the ŷ direction begins to diminish
until it becomes zero when the maximum MSD value is
reached. This causes the ACF to deviate from the standard
model and a decorrelation slowdown as caused by a probe
mobility reduction. In order to quantify this apparent probe
mobility reduction, we compare the 2D standard ACF with our
model, thus obtaining the following expression for the apparent
td

td(app) ) t
gxgy

1 - gxgy
(13)

Figure 9 shows the apparent mobility trend for a system having
a lateral extent corresponding to the dimensionless parameter R
equal to 4. At the lag time where the deviation takes place, the
diffusion time sharply increases with a power law time depen-

dency; see Figure 9. In confined conditions, this trend may arise
on detectable lag times if characterized by tR values lower than
td. In these conditions the ACF shape could reasonably be
assimilated to anomalous-like transport mechanisms. Especially
in these particular cases, neglecting the walls effect could lead
to erroneous results.

It is worth noticing that the proposed model provides the
capability of reformulating the confined ACF in terms of its
unconfined equivalent. These methodology results are general and
still applicable to cases in which the diffusion is not ideal or occurs
simultaneously with other phenomena, i.e., reaction or adsorption
and sticking at the walls. Moreover, the proposed approach allows
one to remove all assumptions regarding the shape of the
detectivity function since the line scanning profiles can be used
to directly determinate the an coefficients in eq 6 by fast Fourier
transform (FFT). The detectable emission intensity distribution
should anyway be precisely described in order to assess molecular
mobility in systems comparable with the focal volume size.

CONCLUSIONS
In confined systems, the ACF deviates from the standard

model and the relevance and occurrence of such deviations
depends on the molecule mobility and the system size. A close
form solution is proposed for micrometric and submicrometric
compartments having at least one dimension comparable with the
characteristic detection volume length.

The proposed model allows the evaluation of such deviations
and a better esteem of the parameters of interest, thus character-
izing the undergoing transport process without invoking any
semiempirical and numerical model. In addition, it permits the
investigation of microstructured material features such as cages
and cavities having dimensions on the micrometric range. In
particular, we measured the lateral confinement extent in a
channel of micrometric width with almost 8% error. The model,
thus, represents an important step toward the measurement of
mass transport in confined systems by means of the FCS
technique.
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Figure 9. Apparent time dependent mobility in FCS experiment
explained by means of MSD confinement. The inset shows MSD
profiles in a 2D system constrained along the ŷ direction. When the
MSD contribution along the confined direction becomes comparable
with the squared lateral confinement, the ACF (blue full line) deviates
from the 2D standard model (thick dashed red line). At the point where
the deviation from the standard model occurs, the apparent charac-
teristic time (red full line) starts to increase with a power law time
dependency.
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